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Epidemic malaria cases and satellite-based vegetation health (VH) indices were

investigated to be used as predictors of malaria vector activities in Bangladesh. The

VH indices were derived from radiances, measured by the Advanced Very High

Resolution Radiometer (AVHRR) on National Oceanic and Atmospheric

Administration (NOAA) afternoon polar orbiting satellites. Two indices charac-

terizing moisture and thermal conditions were investigated using correlation and

regression analysis applied to the number of malaria cases recorded in the entire

Bangladesh region and three administrative divisions (Chittagong, Sylhet and

Dhaka) during 1992–2001. It is shown that during the cooler months (November

to March), when mosquitoes are less active, the correlation between number of

malaria cases and two investigated indices was near zero. From April, when the

mosquito activity season starts, the correlation increased, reaching a maximum

value of 0.5–0.8 by the middle of the high season (June to July), reducing thereafter

to zero by the beginning of the cool season in November. Following these results,

regressional equations for the number of malaria cases as a function of VH indices

were built and tested independently. They showed that, in the main malaria

administrative division (Chittagong) and the entire Bangladesh region, the regres-

sional equations can be used for early prediction of malaria development.

1. Introduction

Malaria is endemic to over 100 countries around the world, and is responsible for over
300 to 500 million clinical cases and more than a million deaths each year (Montanari

et al. 2001, Faiz et al. 2002). Nearly 40% of the world’s population, living mostly in the

poorest countries, is at risk of malaria each year.

Malaria has been known to cause febrile illness in Bangladesh for a long time.

Nearly 200 000 malaria cases are reported each year in Bangladesh for a population of

140 million. This number can fluctuate depending on weather conditions (Elias and

Rahman 1987, Githeko et al. 2000, Craig et al. 2004). Malaria transmission in

Bangladesh is mostly seasonal and limited to the border regions with Myanmar in
the east and India in the north (http://www.bangladeshgov.org/bdmaps) (see figure 1).

Out of the country’s six administrative divisions (containing 64 districts), Dhaka,

Sylhet and Chittagong (13 districts) are malaria endemic (Najera et al. 1998, WHO

2002, Ingrid and Van 2004). These three divisions contribute nearly 98% of the total
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Bangladesh malaria morbidity and mortality statistics reported each year (Rosenberg

et al. 1982). Around 27 million people (20% of the total Bangladesh population) live in

a malaria endemic area (Gramiccia 1952, Rahman et al. 2006). Intense perennial

malaria transmission peaks during the rainy season.

The mosquito’s development, activity and ability to transmit malaria changes from
year to year, depending on the weather conditions. Therefore, weather parameters are

often used as indicators to monitor the malaria epidemic (Nagpal and Sharma 1995,

Smith and McKenzie 2004, Zhou et al. 2004). There are 34 weather stations for the

144000 km2 area of Bangladesh; each station covers nearly 4000 km2. This area is too

large for efficient malaria monitoring. Moreover, the stations are not equally

Figure 1. Administrative divisions and malaria endemic area where satellite data were col-
lected in Bangladesh.
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distributed, with a particularly low density in malaria prone areas. Therefore, infor-

mation from weather stations is not sufficient for effective malaria monitoring in

Bangladesh. This paper investigates potential for application of 4 km Advanced Very

High Resolution Radiometer (AVHRR) data obtained from National Oceanic and

Atmospheric Administration (NOAA) operational environmental satellites (Kogan
2001) for this purpose. Specifically, vegetation health (VH) indices were applied for

detection, surveillance and numerical estimation of malaria development (Byron et al.

1991, Connor et al. 1999, Kaya et al. 2002).

2. Environment

Bangladesh is mostly low, flat alluvial plains (with hills in the southeast) intersected by

numerous rivers, rivulets, canals, swamps and marshy lands. Arable land accounts for

61%, forest for 8%, water for 9% and other landscapes for 22% of the total Bangladesh

area.

The climate of Bangladesh is sub-tropical warm, wet and humid (Pampana 1969,
Rahman et al. 2006). In the malaria endemic areas, the annual rainfall varies between

1000 and 3000 mm, and temperature and humidity ranges are 12–30�C and 65–90%

(Rahman et al. 2006, Paresul 2008), respectively. There are two malaria seasons in

Bangladesh: high from April through to October when the weather is wet and warm,

and low from November through to March when the weather is cool and dry (Remme

et al. 2001, Paresul 2008).

3. Mosquitoes, malaria and climate

Malaria parasite Plasmodium in Bangladesh is transmitted by female Anopheles

mosquitoes (Rosenberg and Maheswary 1982, Elias and Rahman 1987, Ingrid and
Van 2004). Out of the 15 mosquito species, Anopheles Dirus (AD) is the most widely

spread in Southeast Asia, including Bangladesh. Mosquitoes in Bangladesh transmit

malaria year-round (Gramiccia 1952). However, during the cooler season (November

through to March), mosquitoes are less active and the number of malaria cases is

relatively small. This number increases considerably during the warm and wet season

(April through to October) (Rahman et al. 2006, Paresul 2008).

Malaria is transmitted by infected adult female mosquitoes that bite to get blood

for laying eggs. The mosquito hatching period from laying eggs to an adult stage is
from 7–15 days. An entire cycle, when the AD is able to bite, transmit the parasite and

malaria can be observed is 15–50 days (Pampana 1969, Boëte and Koella 2002).

Therefore, during April to October, four to five cycles of mosquito population are

able to transmit malaria. The incubation period for development of malaria after

infected mosquito bites is between 8 and 35 days.

Most research points out three climate factors controlling mosquito activity and

their ability to transmit malaria: rainfall, temperature and humidity (Pampana 1969).

The optimum temperatures for malaria development and activity are 25–27�C (Hay
et al. 2002, Bouma 2003). If the daytime temperature exceeds 40�C, mosquitoes are

less active and parasite transmission is very limited. In general, a larger amount of

rainfall stimulates their activity. However, frequent and intensive rainfall during the

monsoon period might produce stagnation in malaria transmission since it washes out

eggs and reduces the chances for development of adult mosquitoes (Thomson and

Connor 2001, Chandramohan et al. 2002). In the environment of Bangladesh, AD

females stay active during the period when precipitation exceeds 50 mm per month.
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However, a combination of large rainfall and hot weather during June to August

might reduce mosquito activity (Chilundo et al. 2004, Rahman et al. 2006). Also,

malaria transmission might slow down if the humidity drops below 60%.

In a number of studies, weather parameters (rainfall, temperature and humidity)

were used to monitor and predict mosquito development, activities and malaria
transmission (McMichael et al. 1996, Thomson et al. 2000, Rogers et al. 2002).

There are also a few studies showing that the number of malaria cases correlated

with satellite-measured parameters characterizing vegetation (Hay et al. 2001,

Ceccato et al. 2005,). In our earlier research, it has been also shown that the number

of malaria cases in the entire Bangladesh region correlates with AVHRR-based VH

indices (Rahman et al. 2006). In this paper, we present regional analysis in application

of VH indices for early prediction and monitoring of malaria epidemics.

4. Data

Regional malaria statistics and satellite data were used in this study. Malaria statistics

were presented using the annual number of clinical malaria cases during 1992–2001.

These data, collected from all Bangladesh hospitals, were obtained from the

Directorate General of Health, Bangladesh’s Ministry of Health. The hospital data

were aggregated to local administrative unit health centres and further on to the

administrative districts, and finally to the administrative divisions and the entire
Bangladesh region (Wickramasinghe et al. 2002, Paresul 2008). These statistics were

presented by the number of persons (person’s total; PT) who came to a hospital with

fever and the number of positive malaria cases (PMC). The dynamics of the PT and

Figure 2. Yearly population increase, number of persons who come to hospital with fever and
number of malaria cases for Dhaka, Sylhet and Chittagong divisions.
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PMC during the investigated period, along with the total population, is shown in

figure 2. Although the population in regions does not change considerably, the PT

and PMC slightly decreases, indicating that the Government took some measures to

improve the health of the people. However, if the PMC is expressed as a percentage of

the PT of what is normally done in malaria research, then the malaria dynamics show
an increasing trend for the entire Bangladesh region and the major region

(Chittagong) and a decreasing trend for the minor malaria regions.

Satellite data were collected from the NOAA/National Environmental Satellite, Data

and Information Service (NESDIS) global vegetation index (GVI) dataset during

1992–2001. The GVI has a spatial resolution of 4 � 4 km, sampled to 16 km2 and a

daily temporal resolution sampled to a 7 day composite (Kidwell 1997). The GVI data

contains reflectance in the visible (channel 1; ch1; 0.58–0.68 mm), near infrared (channel

2; ch2; 0.72–1.1 mm) and infrared (channel 4; ch4; 10.3–11.3 mm; and channel 5; ch5;
11.3–12.3 mm) spectral bands. Pre-launch and post-launch calibration coefficients were

applied to ch1 and ch2 data in order to calculate reflectance. The normalized difference

vegetation index (NDVI) was calculated as NDVI¼ (R2 – R1) / (R2þR1), where R1 and

R2 represent measured radiances in the ch1 and ch2 bands, respectively.

The ch4 radiances were converted to brightness temperature (TB), which was

adjusted for non-linear behaviour of the AVHRR instrument. Satellite data were

collected for Dhaka, Chittagong and Sylhet administrative divisions. In each of these

divisions, the spatial average values of the NDVI and TB were calculated for each
week during 1992–2001 inside the area shown in figure 1. Satellite data for the entire

Bangladesh region were aggregated as weighted averages for the three administrative

divisions. The yearly coefficients for each administrative division were estimated from

Ci ¼ Ei=Bi; (1)

where Ci is the divisional average weighted coefficient in year i; Ei is the percentage of

malaria cases for the division in year i; and Bi is the percentage of malaria cases for the

entire Bangladesh region in year i.

Table 1 shows the annual coefficients used for each division to calculate the total

Bangladesh percentage of malaria cases.

Table 1. Coefficients used to calculate the weighted mean of the VH indices for the entire
Bangladesh region from the three administrative divisions, in percent (%).

Administrative division

Year Dhaka Chittagong Sylhet

1992 0.30 0.63 0.07
1993 0.33 0.58 0.09
1994 0.26 0.57 0.17
1995 0.22 0.60 0.18
1996 0.11 0.79 0.10
1997 0.08 0.86 0.06
1998 0.05 0.91 0.04
1999 0.04 0.90 0.06
2000 0.03 0.93 0.04
2001 0.03 0.93 0.04
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5. VH indices

The VH indices were developed from the NDVI and TB. The data processing included

removal of high-frequency noise from the annual time series of the NDVI and TB,

approximation of the annual cycle, calculation of the multi-year climatology and

derivation of VH indices (Kogan 2001).

High-frequency temporal noise in the NDVI and TB, related to the fluctuating

transmission of the atmosphere, sun/sensor geometry, bi-directional reflectance, ran-

dom noise and others, was removed by statistical smoothing of the NDVI and TB

annual time series for each pixel during the entire period using a combination of a
median filter and the least-squares technique. The climatology of the NDVI and TB

seasonal cycle was approximated using the multi-year maximum (max) and minimum

(min) weekly values taken from the smoothed data. The max and min for each pixel

and week were calculated from 20 years of historical GVI data (Kogan 2002). The

(max–min) criterion was used to describe and classify the weather-related ecosystem’s

‘carrying capacity’ and therefore represented the climatology of those extreme

weather-related fluctuations in the NDVI and TB. The NDVI and TB dynamics for

the two years with the highest and lowest malaria cases for the three divisions of
Bangladesh are shown in figure 3. The weekly NDVI and TB for each year, together

with the climatology, were used to approximate the VH indices, which are represented

by the vegetation condition index (VCI) and the temperature condition index (TCI).

Equations (2) and (3) show the numerical approximations of VCI and TCI values:

VCI ¼ 100½ðNDVIÞ � ðNDVIminÞ�=½ðNDVImaxÞ � ðNDVIminÞ� (2)

Figure 3. NDVI and TB dynamics for the two years with highest and lowest malaria cases for
three divisions of Bangladesh.
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and

TCI ¼ 100½ðTB maxÞ � ðTBÞ�=½ðTB maxÞ � ðTB minÞ�; (3)

where NDVI, NDVImax and NDVImin (TB, TB_max and TB_min) are smoothed weekly

NDVI (TB) values and their multi-year absolute maximum and minimum values,
respectively (Kogan 2001). The VCI and TCI values change from 0 to 100, reflecting

changes in moisture and thermal conditions from extremely unfavourable (vegetation

stress) to optimal (favourable). VCI and TCI values around 50 represent near-normal

moisture (VCI) and thermal (TCI) conditions; VCI and TCI values below 50 indicate

different levels of vegetation stress with the highest intensity equalling 0. On the

opposite side of the scale, indices greater than 50 indicate no stress or favourable

vegetation conditions (Rahman et al. 2006, Salazar et al. 2007).

6. Result and discussion

6.1 Malaria dynamics

Figure 4 shows the annual percentages of malaria cases and long-term trends in the

three administrative divisions and the entire Bangladesh region during 1992–2001.

Analysis of malaria dynamics indicates that the number of malaria cases experiences a

long-term trend that is approximated by equation (4). Variations in the number of
malaria cases around the trend are associated with weather fluctuations from year to

year. They are expressed as a percentage deviation from the trend line (equation (5))

(Allard 1998, Rahman et al. 2006, Salazar et al. 2008):

Ytrend ¼ a0 þ a1T (4)

and

Di ¼ ðYi=YtrendÞ100; (5)

where Yi are the observed malaria cases (% from the total number of people who come

to local hospitals with fever) in year i; T is the year number; Ytrend is the number of

malaria cases in a given year that fits the long-term trend straight line in a region

Figure 4. Annual malaria cases (expressed as % from the total number of people who come to
the hospitals with fever) and trend line, 1992–2001.
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during 1992–2001; a0 is an intercept; a1 is a slope; Di is a deviation from the trend (%)

in year i. The parameters of the linear equations are shown in table 2.

Analysis of trends (as shown in figure 4) indicates that the total number of malaria

cases in the entire Bangladesh region from 1992 to 2001 increased by 2.5 times (from 6

to 16%). This increase was associated with a similar trend in Chittagong division,

which contributed 60% in the early 1990s to 93% in the early 2000s (table 1). The

number of malaria cases in the other two malaria-prone Bangladesh divisions during
the investigated period decreased. From 1992 to 2001, the Government of Bangladesh

applied a few measures to eradicate malaria in the country. These measures resulted in

a reduction of the number of malaria cases in Dhaka and Sylhet divisions. However,

in the coastal zone of Chittagong division, with a disproportionally high poverty rate,

the number of malaria cases expressed as percentages of people who come to hospital

with fever kept increasing. That large weight of the Chittagong division in the malaria

country total is mainly due to several factors: its geographic location in the coastal

zone, the very high poverty rate and extremely poor sanitary conditions in many slum
areas.

On an annual basis, the number of malaria cases fluctuates considerably. For

example, in Chittagong division in 1997, the number of cases was smaller (the deviation,

D ¼ 86% or 14% below the trend); while in 1998, this number was larger (D ¼ 108%

or 8% above the trend). Even in divisions with a declining long-term trend, the D

variation changes from year to year. For Sylhet division, the number of malaria cases in

1992 was 40% below the trend, while in 1995, it was 60% above the trend. Similarly in

Dhaka division, the 1997 D was 46% below the trend, while in 1995, it was 34% above
the trend. The D value for the entire Bangladesh region in 1997 was characterized by a

small number of malaria cases (D ¼ 73% or 27% below the trend), while in 1994 it was

characterized by a large number of cases (D ¼ 116% or 16% above the trend).

Therefore, the assumption for the modelling was the following: years with D below

the trend were unfavourable for mosquito development (less malaria transmission) and

years with D above the trend were favourable (more malaria transmission). The next

step includes correlation analysis of D with VH indices (Rahman et al. 2006).

6.2 Correlation analysis

Figure 5 shows the dynamics of the Pearson correlation coefficients (PCCs) between

the end of each year D with weekly VCI and TCI values during 1992–2001. Analysis of

the PCC in figure 5 indicates that there are two types of dynamics in the investigated

areas. Dhaka and Sylhet divisions (contribute 3–4% of total Bangladesh malaria cases

in the early 2000s, table 1) have erratic correlation dynamics; Chittagong division and

the entire Bangladesh region have well-pronounced dynamics, corresponding to the

Table 2. Slope and intercept for long-term trend approximation of malaria cases in the three
administrative divisions.

Region Intercept (a0) Slope (a1)

Dhaka 7.94 -0.70
Chittagong 18.65 0.55
Sylhet 16.95 -1.03
Bangladesh 5.15 1.09
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main features of mosquito response to weather and correspondingly their ability to

spread malaria. Following figure 5, during the cool season (November through to

March) when the number of malaria cases is smaller, correlation of D with VCI and

TCI values is low, indicating that VH indices have low predictive ability. From April,

when a warm season starts and mosquito activity intensifies, the correlation rapidly

increases, reaching a maximum of -0.50 for VCI and 0.60 for TCI values during June

to July (weeks 24–28). After these maximums, the correlation gradually decreases to a
near-zero level by the beginning of the next cool season in November after week 40. In

addition to a correct reflection of the timing and intensity of the malaria–VH relation-

ship, the correlation with VCI and TCI values correctly explains the direction of

mosquito reaction to satellite-based proxy. A negative correlation of D with VCI

indicates that more malaria cases (D is above the trend) are developing for dryer

condition (VCI , 50 or reduced vegetation greenness, equation (2)). Conversely,

fewer malaria cases (D is below the trend) are recorded for moist conditions (VCI .

50 or larger vegetation greenness, equation (2)). This confirms that, in average wet
climates, excessive rainfall during the monsoon season negatively affects mosquito

activity and their ability to transmit malaria. Regarding thermal conditions, a larger

number of malaria cases (D is above the trend) is associated with a TCI value greater

than 50, which indicates cooler weather (equation (3)). A smaller number of malaria

cases (D below the trend) is associated with lower TCI values (below 50, hotter

weather, equation (3)) (Rahman et al. 2006, Salazar et al. 2007).

Correlation of D with VCI and TCI values for minor malaria divisions (Dhaka,

Sylhet) showed that the PCC seasonal dynamics is erratic. However, it is important to
emphasize that the PCC dynamic is similar in both divisions, and in some periods, the

malaria–VH relationship is quite strong (PCC ¼ -0.5, -0.6 for weeks 28 and 40).

Therefore, the investigation of VCI and TCI values as predictors was performed for

both major and minor malaria divisions.

Figure 5. Pearson correlation coefficient dynamics of annual DY (percentage deviation of
malaria cases from trend) versus weekly area-mean TCI and VCI.
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Since Chittagong division contributes more than 90% of the malaria cases of the

entire country cases, correlation of D with VCI and TCI values for the entire

Bangladesh region shows a similar value to Chittagong correlation dynamics, espe-

cially for TCI values. The other two divisions (Dhaka and Sylhet), with erratic

behaviour of correlation dynamics, also make a contribution to the entire
Bangladesh region correlation of D with VCI and TCI values. As a result, the entire

Bangladesh region correlation of D with TCI is shifted slightly to the later months

(weeks 36–40), reflecting an elevated correlation (0.5–0.6) during this period in Dhaka

and Sylhet divisions. The Bangladesh correlation between the D and VCI values also

showed some shift in peak correlation to a later period and bi-modal dynamics.

Finally, it is important to emphasize, first, the dynamics of the PCCs in figure 5

correctly identify the seasonal cycle of malaria transmission in relation to the

Bangladesh climate: increase of the absolute PCC values at the beginning of the
warm season, maximum PCC during the critical period (middle of the malaria season)

and decrease of PCC during the end of the warm season. Second, the maximum PCC

of D with TCI is larger (0.8) then with VCI (–0.65), indicating that, in the wet climate

of Bangladesh (annual precipitation 1000–3000 mm), temperature has a greater

impact on the number of malaria cases than moisture. Third, lower TCI values (hotter

weather, see equation (3)) during the critical period is an appropriate predictor of a

smaller number of malaria cases (D below the trend) in Chittagong division and

Bangladesh. Fourth, the D correlation with VCI is negative, indicating that dryer
conditions (reduced greenness, see equation (2)) are conducive to more malaria cases.

This is a very revealing fact, implying that in extremely wet climates, such as

Bangladesh, abundant moisture levels hamper the mosquito’s ability to transmit

malaria.

6.3 Regression analysis

The results of correlation analysis (as shown in figure 5) were used to develop
regression equations of D versus TCI and VCI values for each division and the entire

Bangladesh region. Several options were investigated using either TCI (thermal

condition) or VCI (moisture condition) values only, or both indices, for the weeks

of the highest correlation (Rahman et al. 2006, Salazar et al. 2007). The general form

of the regression equation when both indices were used is

Q ¼ a0 þ a1ðTCIiÞ þ a2ðVCIiÞ; (6)

where a0, a1 and a2 are coefficients, i is the week number and Q is the predicted number
of malaria cases (%) deviation from trend.

The tested variables are presented in table 3, with the corresponding multiple

correlation coefficient (MCC), root mean square error (RMSE) and F criteria (to

test statistical hypothesis). Analysis indicates that, for the two minor divisions (Dhaka

and Sylhet), the MCC is not much different than for individual weeks, but the RMSE

is quite large (30–35%). Such high errors could be expected since the area of the minor

divisions is very remote; the population is not large and is spread over diversified

ecosystems and environmental conditions. In spite of large RMSEs, several models
were selected for further analysis. For Dhaka division, models 2 and 3 showed slightly

higher MCC and lower RMSE values then others. Model 3 has some advantages in

terms of early indication (week 28) of possible malaria epidemic. For the Sylhet

division, model 3 was selected with the best estimates.
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The smallest RMSEs were for the main malaria division of the country, Chittagong

as well as for the entire Bangladesh region. For Chittagong division, the best models

based on the MCC, RMSE and F parameters were 3 and 4. Model 4 (TCI26 and TCI30

predictors) provides slightly larger MCC and smaller RMSE values. But in terms of

timeliness of prediction, model 3 provides advanced warning. For the entire
Bangladesh region, three models showed similar results of estimates: model 1 (pre-

dictor TCI41), 2 (TCI41 and VCI36) and 5 (TCI26 and TCI41). Although model 1 has

the smallest RMSE, model 5 was selected for further analysis since one of the

predictors (TCI for week 26) provides an early indication of a malaria epidemic.

Final equations of the best accepted models for the three malaria prone divisions and

the entire Bangladesh region are shown in table 4. In addition to analysis of MCC,

RMSE and F value, we also used the t-test for regression coefficients with a significance

of 5% and 10%. Following table 4, both Bangladesh models have statistically significant
t-test values for variable TCI41 (a1 for model 1 and a2 for model 5). Although a1 in

model 5 is not statistically significant, the TCI26 variable was included since it provides

an early indication of a malaria epidemic. For Chittagong division, model 4 was

selected as the best since the t-test value of 1.58 for the predictor TCI26 was higher

than a critical value (1.38) with 10% significance. It is interesting to note that, when TCI

and VCI values for the same week 26 were selected as predictors in model 3, the

performance of the statistically significant predictor TCI26 deteriorated compared to

model 4. For the Dhaka and Sylhet division models the second predictors (TCI41 and
TCI39 correspondingly) showed statistical significance at 5% critical value.

7. Model validation

Further analysis included independent validation of models (table 4). Since the

training data is short, the jackknife technique was used as a validation tool. For

each model, one year of malaria and satellite data were excluded from the 1992–2001

dataset. A model (Q ¼ f (VCI, TCI)) was developed leaving one year out, and this
model was applied to the removed year to predict the deviation of the number of

malaria cases from trend (Q) based on satellite data of the eliminated year. Then, the

eliminated year was returned to the dataset and the next year was removed for model

Table 4. Variables and statistical measures of the best models from table 3.

Regression coefficient

t-statistics

Slope
Critical
value Variable

Division Model a0 a1 a2 5% 10% 1 2 MCC RMSE F value

Bangladesh 1 69.34 0.17 1.83 1.38 TCI41 0.79 11.48 13.66
5 67.36 0.20 3.12 1.83 1.38 TCI26 TCI41 0.80 12.24 6.03

Chittagong 3 96.50 1.24 0.53 1.83 1.38 TCI26 VCI26 0.61 6.57 2.04
4 88.94 1.58 0.73 1.83 1.38 TCI26 TCI30 0.63 6.45 2.25

Dhaka 3 93.47 1.30 1.94 1.83 1.38 TCI28 TCI41 0.73 29.09 3.96
Sylhet 3 90.60 1.67 2.24 1.83 1.38 TCI17 TCI39 0.68 29.86 3.03
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development and testing (Bruce 1987). Each year’s data were removed one at a time,

and the candidate model was fitted nine times to the eliminated year. As the result of

this procedure, nine independent predictions were obtained.

Finally, in each of the predictions, the number of malaria cases (P) for the elimi-

nated year (i) was estimated from equation (7). In addition, the coefficient of deter-
mination (R2) for the number of independently predicted and observed malaria cases,

the bias (B), percentage of relative bias (RB) and root mean square error (RMSE) for

this year was estimated using equations (8), (9) and (10):

Pi ¼ YtrendðQi=100Þ; (7)

Bi ¼ Pi � Yi; (8)

RBi ¼ ðBi � B
�
Þ100=Yi (9)

and

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P10

i¼1

ðBiÞ2

10

vuuut
; (10)

where P is the predicted malaria cases (%); B
�

is the average bias for all years; and the
RMSE is a measure of the precision of the predicted value and should be as small as

possible for unbiased precise prediction.

Models were independently tested: 1 and 5 for Bangladesh, 3 and 4 for Chittagong

and 3 for Dhaka and Sylhet division (table 4). In the estimation of model perfor-

mance, we followed the rules: (1) for the entire model, R2 greater than 70 and the

RMSE was less than 15% and (2) for individual years, the bias (B) was less than 2%

and the relative bias (RB) was less than 10%.

The independently validated results presented in table 5 and figure 6 show that, for
the entire models, the R2 and RMSE criteria have been met for Bangladesh, Chittagong

(model 3) and Dhaka. However, the analysis of the annual model’s performance

showed that only Bangladesh and Chittagong models perform reliably. In 8 years for

the Chittagong division and 9 years (out of 10 tested) for Bangladesh, the bias was less

than 2% and the relative bias was less than 10%. Regarding models for minor malaria

regions, the annual results of testing are negative since, as seen in table 5, the relative

bias indicates a strong deterioration of the model’s performance after 1996 (Sylhet RB

was 8–16% and Dhaka RB was 19–33%), while prior to 1996, the relative bias was 50%
less. Such an explanation can be given to the fact that the Bangladesh Government

developed very comprehensive measures to combat malaria in Sylhet and Dhaka.

During 1996–2001, this resulted in a considerable reduction of malaria cases (as

shown in figure 4), and the data must be interpreted with caution because of the decline

in surveillance activities in the country over the past few years (WHO 1999).

The Bangladesh Government has also undertaken malaria-fight measures in 13

districts from Chittagong, Sylhet and Dhaka divisions. However, the effectiveness

was not as good as in the minor malaria regions because large numbers of people were
exposed to malaria, especially among the poor in Chittagong division (93% of the

entire Bangladesh region people affected). The lower effectiveness of the malaria

combat measures is also indicated by an increase in the number of malaria cases

during 1992–2001 (as shown in figure 4).
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Table 5. Independent evaluation of the best regression model using the jackknife technique.

(a) Chittagong: R2 ¼ 0.71 (between simulated and observed malaria cases), RMSE ¼ 1.20.

Year
excluded

Malaria
observed

(Y)

Cases
predicted
(P) (%)

Bias (B =
Y - P)

(%)

Relative
Bias (RB)

(%)

Estimated
trend (Ytrend)

(%)

Predicted
deviation from
trend (Q) (%)

1992 18.18 17.49 -0.69 -2.67 19.20 91.10
1993 18.60 18.44 -0.16 0.25 19.76 93.33
1994 21.91 23.51 1.60 8.23 20.31 115.75
1995 21.95 19.06 -2.89 -12.22 20.86 91.39
1996 22.60 19.22 -3.38 -14.05 21.42 89.73
1997 18.94 19.93 0.99 6.28 21.97 90.70
1998 24.23 24.09 -0.14 0.25 22.52 106.95
1999 24.23 25.03 0.80 4.15 23.07 108.50
2000 23.14 25.33 2.19 10.33 23.63 107.18
2001 23.14 22.79 -0.35 -0.65 24.18 94.24
Mean 21.69 21.49 -0.20 -0.01 21.69 98.89

(b) Bangladesh: R2 ¼ 0.88 (between simulated and observed malaria cases), RMSE ¼ 1.23.

Year
Malaria Cases

Bias
Relative Estimated Predicted

excluded
observed predicted Bias trend deviation from

(Y) (P) (%) (B) (%) (RB) (%) (Ytrend) (%) trend (Q) (%)

1992 6.02 5.71 -0.31 -6.39 6.24 91.58
1993 7.60 7.58 -0.02 -1.26 7.33 103.45
1994 10.24 10.26 0.02 -0.53 8.41 122.05
1995 10.45 9.61 -0.84 -8.84 9.50 101.11
1996 8.70 8.19 -0.51 -6.75 10.59 77.35
1997 7.17 9.83 2.66 36.06 11.67 84.27
1998 13.70 11.82 -1.88 -14.33 12.76 92.61
1999 16.50 15.86 -0.64 -4.38 13.85 114.49
2000 15.53 17.15 1.62 9.91 14.93 114.85
2001 15.39 16.07 0.68 3.93 16.02 100.34
Mean 11.13 11.21 0.08 0.74 11.13 100.21

(c) Sylhet: R2 ¼ 0.37 (between simulated and observed malaria cases), RMSE ¼ 4.30.

Year
Malaria Cases

Bias
Relative Estimated Predicted

excluded
observed predicted bias trend deviation from

(Y) (P) (%) (B) (%) (RB) (%) (Ytrend) (%) trend (Q) (%)

1992 9.60 15.50 -5.90 9.53 15.91 97.41
1993 12.76 12.50 0.26 7.17 14.88 83.98
1994 21.25 16.37 4.88 4.30 13.85 118.21
1995 20.67 13.67 7.00 4.42 12.82 106.66
1996 12.12 7.49 4.63 7.55 11.78 63.56
1997 7.40 9.68 -2.28 12.36 10.75 90.03
1998 7.03 6.74 0.29 13.01 9.72 69.34
1999 5.85 12.36 -6.51 15.63 8.69 142.27
2000 8.00 6.85 1.15 11.43 7.65 89.59
2001 8.00 6.98 1.02 11.43 6.62 105.50
Mean 11.27 10.81 0.45 9.68 11.27 96.66

(Continued)
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It would be important to emphasize that, although Chittagong and Bangladesh

models met both performance criteria (for the entire model and individual years), in

some years, the bias and relative bias exceed the threshold’s level. Further analysis is
focused on these years: 1997 (RB ¼ 11%) and 1997 (RB ¼ 36%) for Chittagong, 1998

(RB ¼ 14%) for Bangladesh. In 1997, models for both regions overestimated the

number of malaria-affected people and in 1998 this number was underestimated in

Table 5. (Continued.)

(d) Dhaka: R2 ¼ 0.83 (between simulated and observed malaria cases), RMSE ¼ 1.09.

Year
Malaria Cases

Bias
Relative Estimated Predicted

excluded
observed predicted bias trend deviation from

(Y) (P) (%) (B) (%) (RB) (%) (Ytrend) (%) trend (Q) (%)

1992 5.40 6.92 -1.52 10.53 7.24 95.57
1993 7.60 7.64 -0.04 7.48 6.54 116.80
1994 7.70 8.53 -0.83 7.39 5.84 146.13
1995 6.90 5.46 1.44 8.24 5.14 106.31
1996 3.00 1.37 1.63 18.96 4.44 30.87
1997 2.03 3.50 -1.47 28.01 3.74 93.45
1998 2.50 2.56 -0.06 22.75 3.05 83.97
1999 2.40 3.56 -1.16 23.70 2.35 151.59
2000 1.70 2.16 -0.46 33.45 1.65 130.71
2001 1.70 1.07 0.63 33.45 0.95 112.43
Mean 4.09 4.28 -0.18 19.40 4.09 106.78

Figure 6. Correlation between independently predicted and observed number of malaria cases
(% of malaria cases from the total number of people who come to the regional hospitals with
fever).
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Bangladesh. First, we should emphasize that 1997/98 was a strong El Niño year

(positive sea-surface temperature anomaly in the tropical Pacific) (Barnston et al.

1997, Kovats et al. 2003). As a result, the southeastern monsoon in Bangladesh was

delayed by one month, resulting in a long period of extremely hot and dry weather.

Figure 7 shows TCI and VCI dynamics in Chittagong and Bangladesh. During the

investigated years, severe drought (TCI ¼ 15–30) developed from June through to

October. Such conditions produced a much stronger impact on mosquito develop-
ment, disrupting reproductive mosquito cycles and the intensity of malaria transmis-

sion, which resulted in a smaller number of malaria cases compared to the prediction.

To characterize such extreme conditions, the model’s predictors should characterize

longer periods (several weeks and even months), but this is not possible now due to a

limited statistical sample. Unfortunately, we did not find a reasonable explanation for

the 1998 smaller number of predicted malaria cases in the entire Bangladesh region. It

is important to note that there is some contradiction between Chittagong and

Bangladesh predictions in 1998: the Chittagong (contributes 97% of malaria cases)
predictor met the selected criteria (RB ¼ 3.14%) and the Bangladesh prediction did

not (RB ¼ 14.33%).

8. Conclusions

AVHRR-based VH indices characterizing moisture (VCI) and thermal (TCI) condi-

tions were used during 1992–2001 as predictors for estimation of malaria cases in the

three administrative divisions and compared with the entire Bangladesh region.
Correlation between the number of malaria case deviations from trend (D) in

Bangladesh and the Chittagong division (the most affected with malaria) with TCI

and VCI was similar: strong during June through to October (main malaria season)

and weak during November through to May. The transition period for malaria is

Figure 7. Dynamics of TCI during the years of RB exceeding the evaluation threshold.
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from April (warm season starts), when the correlation rapidly increases, through to

June (weeks 24–26), when the correlation reaches a maximum. After the maximum,

the correlation gradually decreases, reaching nearly zero in November (after week 40).

It was found that the number of malaria cases was more sensitive to thermal (TCI)

then moisture (VCI) conditions. Therefore, statistical models were developed for
prediction of the number of malaria cases based on TCI parameters. In minor

divisions (Sylhet and Dhaka) where the population is distributed over a large area

and malaria-fight measures provide positive results, the correlation dynamics were

not well determined.

Correlation and regression analysis shows that a malaria epidemic can be carried

out well ahead of an epidemic occurrence. These models can be used to predict

malaria in districts and the entire Bangladesh region.

Further investigation might include high-resolution satellite data (sea-surface tem-
perature (SST) and soil moisture) from the National Aeronautics and Space

Administration’s (NASA’s) Moderate Resolution Imaging Spectroradiometer

(MODIS), and Radar-Satellite (RADARSAT), investigation of such factors as sea-

surface temperature and combing satellite data and weather data. Satellite technology

is currently not available in Bangladesh. Therefore, VH index data delivered in real

time to http://orbit.nesdis.noaa.gov/smcd/emcb can be used, together with the

obtained equations for early detection of conditions that are suitable for malaria

epidemics.
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